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Abstract. We combine, within the framework of the standard model, the results of Higgs search experi-
ments with the information coming from an accurate theoretical calculation and precision measurements
to provide a probability density function for the Higgs mass, from which all numbers of interest can be
derived. The expected value is around 160–170GeV, with an expectation uncertainty, quantified by the
standard deviation of the distribution, of about 60–80GeV. The median of the distribution is 150GeV,
while 75% of the probability is concentrated in the region MH ≤ 200GeV. The 95% probability upper
limit turns out to be around 300GeV.

1 Introduction

Presently, one of the main interests in high energy physics
is the search for evidence of the Higgs boson and the
determination of its mass. Although all direct searches
have been unsuccessful till now, the self-consistency of the
standard model (SM) in the electroweak sector [1] makes
physicists highly confident about the hypothesis that the
Higgs boson exists, and that most likely it has effective
properties close to those expected from the minimal stan-
dard model.

In this paper we use the accurate theoretical predic-
tions for the effective mixing parameter, sin2 θlept

eff ≡ s2
eff

[2], and the W boson mass, MW [3], together with avail-
able experimental information, including also the results
of direct search experiments carried out at LEP, to infer
the value of the Higgs mass, MH . Clearly, the unavoidable
uncertainty concerning the value of each of the experimen-
tal parameters, as well as the accuracy of the calculations,
allows only a probabilistic inference to be made. As a re-
sult we provide a probability density function (p.d.f.) for
the mass of the Higgs boson

f(mH |“data”,“SM”) ≡ f(mH |dir.&ind.)

conditioned by the experimental data from direct searches
(dir.) and precision measurements (ind.) under the as-
sumption of the validity of the SM. From this function
we make a set of probabilistic statements about MH , and
summarize the result in terms of convenient and conven-
tional values (expected value, standard deviation, mode,
median, etc.).

The paper is structured in the following way: in the
next section we recall the theoretical formulae used in the
analysis; Sect. 3 is devoted to a detailed description of the

inferential method used; all the input quantities which
enter the analysis are introduced and commented on in
Sect. 4. Section 5 deals with the determination of MW and
MH using only indirect information. Section 6 presents
the main result of the paper, namely f(mH |dir.&ind.).
Finally, we draw some conclusions.

2 SM formulae relating the Higgs mass
to the experimental observables

The most convenient way to approach the problem is to
make use of the simple parameterization proposed in [4], in
which the relations among the observables mostly sensible
to the Higgs boson mass are summarized in two formulae:

s2
eff = (s2

eff)◦ + c1A1 + c2A2 − c3A3 + c4A4, (1)
MW = M◦

W − d1A1 − d5A
2
1 − d2A2 + d3A3 − d4A4. (2)

(s2
eff)◦, M◦

W , ci and di are theoretical quantities and the
Ai are related to experimental observables, namely A1 ≡
ln(MH/100 GeV), A2 ≡ [(∆α)h/0.0280 − 1], A3 ≡[
(Mt/175 GeV)2 − 1

]
and A4 ≡ [(αs(MZ)/0.118 − 1],

where Mt is the top quark mass, αs(MZ) is the strong
coupling constant and (∆α)h is the five-flavor hadronic
contribution to the QED vacuum polarization at q2 =
M2

Z . The two theoretical quantities (s2
eff)◦ and M◦

W are
the analogues of the experimental ones, but the former
ones are obtained by the theory at the reference point
(∆α)h = 0.0280, Mt = 175 GeV, and αs(MZ) = 0.118.

Equations (1) and (2) are simple analytical formulae
that reproduce to very good accuracy the results of [2,3].
In these papers the incorporation of the O(g4M2

t /M2
W )

corrections into the calculation of the effective electroweak
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mixing angle and MW is presented. These new contribu-
tions are now implemented in the fitting codes used by
the LEP Electroweak Working Group (EWWG). Their
analysis shows that the effect of these new corrections
is to lower the fitted value for the Higgs mass by about
30 GeV and to cause a sizable decrease in the ambigu-
ity related to the scheme dependence [5]. Tables 1 and 2
of [4] report the values of the various theoretical quanti-
ties entering in (1) and (2) for three different renormaliza-
tion schemes. Using these values, (1) approximates the de-
tailed calculations of [2,3] for 75 ≤ MH ≤ 350 GeV, with
the other parameters in the ranges around the reference
values δMt = ±5.5 GeV, δ(∆α)h = ±0.00065 and δαs =
±0.05, with average absolute deviations of ≈ 4×10−6 and
maximum absolute deviations of (1.1−1.3)×10−5 depend-
ing on the scheme. Similarly (2) shows average absolute
deviations of approximately 0.2 MeV and maximum abso-
lute deviations of (0.8–0.9) MeV. Outside the above range,
the deviations increase reaching (2.6–2.8)×10−5 and (3.1–
3.3) MeV at mH = 600 GeV. It is clear that augmenting
(1) and (2) with higher powers of the quantities Ai one
can reach a better agreement in a wider range of Higgs
mass values. However, once it is verified “a posteriori”
that indeed f(mH) is concentrated in the region of va-
lidity of (1) and (2), then the use of a more complicated
parameterization is not really necessary.

Equations (1) and (2) can be used for two different
purposes. The first is to solve them with respect to A1
and MW , getting simultaneously MH and MW . This value
of MW can be compared to the experimental measure-
ments in order to check the consistency of the theory. Once
this check is performed, both (1) and (2) can be used to
infer MH , although the two determinations are not in-
dependent, due to common terms in the two formulae.
The combination of these two results, taking into account
the correlations, provides a joint distribution that, con-
strained also by the direct search results, will give us the
final f(mH |“data”,“SM”).

3 Analysis method

3.1 Probabilistic approach to infer MH and MW

The quantities entering (1) and (2) (hereafter called “in-
put quantities”) are not known exactly, and this makes
the result uncertain too. It is natural to handle this un-
certainty by a probabilistic approach. The numerical value
of the input quantities, which here will be generically indi-
cated1 by Xi, is interpreted as an uncertain number (also
called “random variable”). This means that each of them
has an infinite number of possibilities characterized by a
number f(xi), such that f(xi)dxi gives the (infinitesimal)
probability that the “true value” Xi is in the interval dxi

around xi. In this framework the extraction of MH from

1 Notice that, following the practice of probability theory, we
indicate with capital letters the name of the variable and with
small letters the values they may assume

(1) gives a solution that depends on the uncertain values
Xi,

MH = MH(X1, X2, . . . , Xn), (3)

and therefore we need to evaluate the p.d.f. of a function
of random variables. The most general way to describe the
uncertainty about the value of quantities Xi is given by
the joint distribution f(x1, x2, . . . , xn). Then, a straight-
forward application of the probability calculus leads to
[6]:

f(mH) =
∫

f(x1, x2, . . . , xn) (4)

·δ (mH − MH(x1, x2, . . . , xn)) dx1dx2 · · ·dxn,

where the integral is extended over the hypervolume in
which the Xi are defined. The l.h.s. of (4) actually stands
for f(mH |ind., “(1)”). Equation (4) has a simple intuitive
interpretation2: the (infinitesimal) probability element
f(mH)dmH depends on “how many” elements dx1dx2 · · ·
dxn contribute to it, each weighted by the p.d.f. calculated
in the point {x1, x2, . . . , xn}.

The solution of (4) is very complicated; however, we
can perform a series of approximations and make use of
the central limit theorem to get the final p.d.f. without
actually making explicit use of (4) and without reducing
the accuracy of the inference. We would like to list the
steps needed to determine f(mH |ind., “(1)”).

(1) First, with a great degree of approximation, the quan-
tities entering (1) are independent, or at least this con-
dition is satisfied for the quantities from which the
uncertainty on MH mostly depends. Actually, the the-
oretical parameters entering (1) and (2) contain the
same information evaluated in different renormaliza-
tion schemes, and, therefore, they could all be corre-
lated. A more careful procedure for handling their un-
certainty could be considered. This issue will be dis-
cussed at the end of this section, and the numerical
outcomes of the two methods used will be compared
when discussing the results.

(2) Second, we make use of the central limit theorem,
which makes the probability distribution of a linear
combination of random quantities under well-known
conditions Gaussian. The importance of this theorem
is that we only have to make sure that the terms domi-
nating the overall uncertainty are practically Gaussian.
As far as the other terms are concerned, the exact form
of the individual distributions does not matter, since
only expected value and variance are relevant.

(3) The consequences of the central limit theorem can be
extended to the variables which do not enter linearly,
if their dependence can be linearized with a reasonable
degree of approximation in a range of several standard
deviations around their expected value. This amounts

2 An alternative way of interpreting (4) is to think of a Monte
Carlo simulation where all the input quantities enter with their
distributions, and correlations are properly taken into account.
The histogram of MH calculated from (3) will “tend” to f(mH)
for a large number of generated events
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to requiring these variables to have a sufficiently small
variation coefficient (the “relative uncertainty” of the
physicists’ parlance).

(4) Applying this analysis to our case, we see that the
solution of (1) in terms of mH is strongly non-linear.
Therefore A1 is the natural quantity with which to
express the result at an intermediate stage, being

A1 ∼ N (E[A1], σ(A1)), (5)

where the last notation is a shorthand for a normal
distribution of expected value E[A1] and standard de-
viation σ(A1), calculated as

E[A1] = A1(E[X1],E[X2], . . . ,E[Xn]) (6)

σ2(A1) =
∑

i

(
∂A1

∂Xi

)2

σ2(Xi), (7)

with the derivates evaluated at the expected values.
(5) Finally, the exact form of f(mH) can be obtained from

f(a1), making use of standard probability calculus, e.g.
using (4).

A similar strategy can be used to get the parameters of the
Gaussian which describes the knowledge of MW . In this
case the linearization hypothesis is already reasonable for
MW itself and the resulting f(mW ) is therefore normal
with a high degree of approximation.

The procedure outlined above does not take into ac-
count possible correlations among the theoretical parame-
ters of (1) and (2). Estimating the correlation coefficients
from the sample provided by Tables 1 and 2 of [4] would
be a rough and complicated procedure. In fact, the covari-
ance matrix can only take into account linear correlations,
although, in general, these effects could be more subtle. A
more elegant and general way to handle this information
is, then, to consider different inferences, each conditioned
by a given set of parameters, labelled by Ri. This can
be applied at any stage of the analysis, although it is in
practice more convenient to apply it at the level of the
inference on A1. For each renormalization scheme Ri we
then have

A1|Ri
∼ N (E[A1|Ri], σ(A1|Ri)). (8)

The p.d.f. of A1, “integrated” over the possible schemes,
is then

f(a1) =
∑

i

f(a1|Ri) · f(Ri), (9)

where f(Ri) is the probability assigned to each scheme.
The calculation of expectation value and variance is
straightforward. When there is indifference with respect
to the renormalization schemes (i.e. f(Ri) = 1/3 ∀i) we
get

E[A1] =
1
3

∑
i

E[A1|Ri], (10)

σ2(A1) =
1
3

∑
i

σ2(A1|Ri)

+
1
3

∑
i

E2[A1|Ri] − E2[A1] (11)

=
1
3

∑
i

σ2(A1|Ri) + σ2
E , (12)

where σE indicates the standard deviation calculated from
the dispersion of the expected values. The p.d.f. (9) is not
Gaussian in general, since it comes from a linear combi-
nation of p.d.f.’s, and not from a linear combination of
variables (i.e. the central limit theorem does not apply).
Nevertheless, in our case the Gaussian approximation will
be valid, as will be discussed below.

3.2 Double inference on MH

and combination of the results

The method described in the previous section is applied
to each of the equations (1) and (2), obtaining two in-
ferences on A1, the first (indicated by As

1) depending on
the effective electroweak mixing parameter and the sec-
ond (Aw

1 ) on the W mass. The second equation leads to
two solutions and the largest value has been considered,
because of the agreement with the As

1 and also because
the smaller solution leads to a mass well below the range
firmly excluded by present observations.

The two uncertain values As
1 and Aw

1 are not inde-
pendent, due to the fact that some of the input quanti-
ties appear in both relations. This means that we have
to consider the joint distribution f(as

1, a
w
1 ). Because each

variable individually is Gaussian, the joint distribution is
described by a two-dimensional normal, with a correla-
tion coefficient ρ(As

1, A
w
1 ) calculated from the covariance

between As
1 and Aw

1 :

ρ(As
1, A

w
1 ) =

Cov(As
1, A

w
1 )

σ(As
1) · σ(Aw

1 )
.

Again using linearization around the expected values, one
easily finds that the covariance is given by

Cov(As
1, A

w
1 ) =

∑
i

∂As
1

∂Xi
· ∂Aw

1

∂Xi
· σ2(Xi)

=
∑

i

(
∂As

1

∂Xi
· σ(Xi)

)
·
(

∂Aw
1

∂Xi
· σ(Xi)

)
, (13)

where this last formulation is very convenient for practical
purposes, as we will see below. Equation (13) does not take
into account the correlations among the various theoreti-
cal coefficients. However, numerically they are completely
negligible with respect to the ones due to A2, A3 and A4
and therefore the use of (13) is well justified.

The presence of the correlation term prevents the two
results from being combined with the usual formula of the
average weighted with the inverse of the variance. There
are several possibilities for taking correlation into account:
either working directly with p.d.f.’s, or assuming that the
final result is also normally distributed and evaluating the
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two parameters of the distribution. Obviously the con-
clusions will not depend on the procedure if the normal-
ity assumption is correct, as it is in this case. The way
that seems to us the most intuitive relies on the fact that
ρ(As

1, A
w
1 ) is positive, as we will see, and thus the corre-

lation between the two results is equivalent to that intro-
duced by an uncertainty on a common offset (see, e.g., [7]).
Therefore the variances of As

1 and Aw
1 may be considered

as being formed of two parts: one of these parts, indicated
by σ2

c , is common to both variances, while the other is
individual. The common part is given by covariance, i.e.
σ2

c = Cov(As
1, A

w
1 ). The individual contribution to each

variance is then evaluated subtracting σ2
c . This procedure

allows the expected value E[A1] to be evaluated as the av-
erage of E[As

1] and E[Aw
1 ], weighted with the inverse of the

individual variance. The variance σ2(A1) will be, finally,
the sum of the “variance of the weighted average”, plus
the common variance.3 We have, then,

E[A1] =
(

E[As
1]

σ2(As
1) − σ2

c

+
E[Aw

1 ]
σ2(Aw

1 ) − σ2
c

)

×
(

1
σ2(As

1) − σ2
c

+
1

σ2(Aw
1 ) − σ2

c

)−1

,

σ2(A1) = σ2
c +

(
1

σ2(As
1) − σ2

c

+
1

σ2(Aw
1 ) − σ2

c

)−1

.

Finally, the Gaussian result on A1 is transformed into
the p.d.f. of MH using probability calculus. For example,
one can make use of (4), and the result is straightfor-
ward, remembering that δ(mH −100 exp a1) = m−1

H δ(a1 −
ln(mH/100)). Then it is possible to evaluate the expected
value, standard deviation, mode (M̂H) and median (M50

H )
of MH (see, e.g., [9] for the properties of the so-called log-
normal distribution). The results (expressed in GeV) are

f(mH |ind.) =
1√

2πσ(A1)
1

mH

× exp

[
− (ln (mH/100) − E[A1])

2

2σ2(A1)

]
, (14)

E[MH ] = 100 exp
[
E[A1] +

1
2
σ2(A1)

]
, (15)

σ(MH) = 100
(

exp
[
2E[A1] + 2σ2(A1)

]

− exp
[
2E[A1] + σ2(A1)

]) 1
2

, (16)

M̂H = 100 exp
[
E[A1] − σ2(A1)

]
, (17)

M50
H = 100 exp [E[A1]]. (18)

Notice that the value of these position and dispersion pa-
rameters of f(mH) is, in general, not simply the back
transformation of those of f(a1).

3 An alternative way, which still avoids working with p.d.f.’s,
is described in [8]. The two procedures yield identical results

3.3 Including the constraint from direct search

The knowledge of the value of MH is modified further by
the non-observation of the Higgs boson up to the high-
est LEP energies. To understand how f(mH |ind.) changes
when it is further conditioned by the negative direct ex-
perimental result, let us consider a search for Higgs pro-
duction in association with a particle of negligible width
in an ideal situation (“infinite” luminosity, perfect effi-
ciency, no background) whose outcome was no candidate.
Consequently all mass values below a sharp kinemati-
cal limit MK are excluded. This implies that: (a) f(mH)
must vanish below MK (otherwise one would have ob-
served the particle); (b) above MK the relative probabili-
ties cannot change, because there is no sensitivity in this
region, and then the experimental results cannot give in-
formation over there. For example, if MK is 90 GeV, then
f(200 GeV)/f(100 GeV) must remain constant before and
after the new piece of information is included. In this ideal
case we have, then,

f(mH |dir.&ind.)

=




0, mH < MK,
f(mH |ind.)

∫ ∞
MK

f(mH |ind.)dmH
, mH ≥ MK,

(19)

where the integral in the denominator is just a normaliza-
tion coefficient.

More formally, this result can be obtained making ex-
plicit use of Bayes’ theorem. Applied to our problem, the
theorem can be expressed as follows (apart from a nor-
malization constant):

f(mH |dir.&ind.) ∝ f(dir.|mH) · f(mH |ind.), (20)

where f(dir.|mH) is the so-called likelihood, which plays
the role of updating the p.d.f. once the new piece of infor-
mation is included in the inference. In the idealized exam-
ple we are considering now, f(dir.|mH) can be expressed
in terms of the probability of observing zero candidates
in an experiment sensitive up to a MK mass for a given
value mH , or

f(dir.|mH) = f(“zero cand.”|mH)

=

{
0, mH < MK,

1, mH ≥ MK.
(21)

In fact, we would expect an “infinite” number of events
if MH were below the kinematical limit. Therefore the
probability of observing nothing should be zero. Instead,
for MH above MK, the condition of vanishing production
cross section and no background can only yield no candi-
dates.

In real life situations the transition between values
which are impossible to those which are possible is not
so sharp. Because of physical reasons (such as threshold
effects and background) and experimental reasons (such
as luminosity (L) and efficiency (ε)) we cannot be really
sure about excluding values just below MK; nevertheless
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ℜ

Fig. 1. a Cross-section e+e− → H + Z◦ as a function of
mH for

√
s = 172, 183, 189GeV. The vertical lines are at

mH =
√

s − MZ . b R vs. mH for nobs = λB = 0 for√
s = 172, 183, 189GeV, with ε = 30% and L = 10, 55, 180pb−1

per experiment, respectively. Odd lines are for a single experi-
ment, even ones represent the combination of four

very small values of the mass are ruled out. In the case
of Higgs production at LEP the dominant mode is the
Bjorken process e+e− → H + Z◦. This reaction does not
have a sharp kinematical limit at

√
s − MZ (minus a neg-

ligible kinetic energy), due to the large total width of the
Z◦. The effective kinematical limit (MKeff ) depends, then,
on the available integrated luminosity and could reach up
to the order of ≈ √

s − MZ + O(10 GeV) for very high
luminosity. This is clear from Fig. 1a, where the cross sec-
tion e+e− → H + Z◦, with the Z decaying in all possible
channels, is plotted as a function of the Higgs boson mass
for 172, 183 and 189 GeV c.m. energy, with the vertical
lines showing

√
s − MZ for the three cases.

In this non-ideal situation we expect the step function
of (21) to be replaced by a smooth curve which goes to
zero for low masses and to 1 for MH → MKeff , where
the experimental sensitivity is lost. In this case “dir.” in
(20) stands, in principle, for all possible experimental ob-
servables and the function f(dir.|mH) should be provided
by the experiments. However, the LEP collaboration re-
sults on the Higgs mass searches are usually presented in
terms of the confidence level (C.L.) [10]. As discussed in
Sect. 6 this quantity does not have a simple connection
to f(dir.|mH). Given this situation we decided to model
the likelihood in a way which seems compatible with the
physics case.

First, all possible experimental observables can, in
practice, be replaced by suitable combinations which de-
pend on the Higgs mass. The simplest of these possible

“summaries” of the data is the number of observed candi-
date events, which we will indicate by nobs. The number
of candidate events expected to be observed, on the other
hand, is given by the sum of the Higgs events, indicated by
λS(mH), and the expected number of background events,
λB , assumed here to be well known (see e.g. [6] for the
natural extension when λB is uncertain too). The mass
dependence of the former is due to the mass dependence
of cross section, branching ratio (b.r.) and efficiency, and
so it depends on the decay channel investigated. For sim-
plicity, we discuss the case of a likelihood obtained con-
sidering the total number of observed candidate events in
a single channel. This is given by

f(nobs|mH , λB)

=
e−(λS(mH)+λB) · (λS(mH) + λB)nobs

nobs!
, (22)

since nobs is expected to be described by a Poisson dis-
tribution with parameter λ = λS(mH) + λB . In order to
easily compare and combine the updating power provided
by each piece of information, it is convenient to replace
the likelihood by a function, R, that goes to 1, where the
experimental sensitivity is lost [11]. This function can be
seen as the counterpart, in the case of a real experiment, of
the step function of (21). Because constant factors do not
play any role in Bayes’ theorem, we can divide the like-
lihood by its value calculated for very large Higgs mass
values, where no signal is expected4, i.e. MH → “∞”, or
λS → 0. Clearly, this operation makes sense only if the
likelihood is different from 0 for MH → “∞”. This con-
dition is satisfied for any nobs in case λB 6= 0, but when
nobs = 0 only for λB = 0. The case of nobs 6= 0 with
λB = 0 leads to a clear discovery, i.e. the likelihood will
assume positive values only below MKeff and there is no
need anymore to build the R function with the desired
asymptotic properties.

R, as a mathematical function of mH , with nobs and
λB acting as parameters, can be seen as a kind of shape
distortion function of the p.d.f. introduced by the new
data. As long as R(mH) is 1, the shape (and therefore the
relative probabilities in that region) remains unchanged,
while in the limit R(mH) → 0 the p.d.f. vanishes. One
should notice that R(mH) can also assume values larger
than 1 in the region of sensitivity, corresponding to a num-
ber of observed candidate events larger than the expected
background. In this case the p.d.f. will be stretched below
the effective kinematical limit and this might even prompt
a claim for a discovery if R becomes sufficiently large for
the probability of MH in that region to get very close to
1.

Applying this formalism to our case and in the realistic
situation of non vanishing expected background we get

R(mH ;nobs, λB) =
e−(λS(mH)) · (λS(mH) + λB)nobs

λnobs
B

,

(λB 6= 0, if nobs 6= 0). (23)
4 In the statistics lexicon this function is the Bayes factor

between the generic mass mH and MH = “∞”
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ℜ

Fig. 2. R vs. mH for two search channels at
√

s = 183GeV
with L = 55pb−1. The lines a–c represent a channel with b.r.×
ε = 1.7% while d–f correspond to a search with b.r.× ε = 32%.
The cases considered are nobs = 2, λB = 0.2 (a,d); nobs =
3, λB = 3 (b,e); nobs = 0, λB = 1.5 (c,f)

Instead, when λB = 0 and nobs = 0 one can take the limit
of the above formula obtaining R(mH) = e−λS(mH). Ex-
amples of this function are shown in Fig. 1b in case of no
events candidates and zero background (nobs = λB = 0),
for

√
s = 172, 183 and 189 GeV, considering a single LEP

experiment (odd numbers) and the combination of all ex-
periments (even numbers). The calculations have been
done assuming a nominal integrated luminosity per ex-
periment of 10, 55 and 180 pb−1 for the three energies,
and an average and constant detection efficiency of 30%.
Figure 2, instead, illustrates six different possible scenar-
ios. In the figure we consider a search at

√
s = 183 GeV

with L = 55pb−1 by a single experiment that looks for two
Higgs decay channels with different branching ratios. For
each channel we plot three different situations of expected
background and observed number of events.

As already pointed out, f(dir.|mH), and hence
R(mH ; dir.), might be more complicated than the simpli-
fied likelihood used here, and it can only be provided by
experiments. Either of the above functions would be the
most unbiased way of reporting the experimental result
and it would allow several pieces of experimental informa-
tion to be easily combined. In fact, when individual ex-
periments or decay channels are independent, the overall
likelihood is simply the product of the individual likeli-
hoods and therefore

R(mH ; “all data”) = ΠiRi(mH ; “data i”), (24)

and this can be used in (20) to get the distribution of MH

which takes into account all available data.

4 Input quantities entering
the indirect determination

In this section we discuss the experimental and theoretical
inputs used in our analysis.

4.1 Hadronic contribution to QED vacuum polarization

The QED coupling at the Z boson mass scale plays an im-
portant role in the prediction of mH . This fact has always
stimulated a lot of activity on the exact determination of
(∆α)h. Most phenomenological analyses of it rely on the
use of all the available experimental data on the hadron
production in e+e− annihilation and on perturbative QCD
(pQCD) for the high energy tail (E ≥ 40 GeV) of the dis-
persion integral. The reference value in this approach is
[12]

(∆α)EJ
h = 0.02804 ± 0.00065. (25)

In the recent past the hadronic contribution to the vac-
uum polarization has been the subject of several new in-
vestigations that advocate the use of pQCD down to an
energy scale of the order of 1 GeV [13,14]. In this more
theory driven path, the various analyses differ on the en-
ergy value at which to start applying pQCD and on the
amount of theoretical inputs used to evaluate the experi-
mental data in the regions, like, for example, the threshold
for the charmed mesons, where pQCD is not applicable.
The common characteristic of these works with respect
to the most phenomenological ones is to obtain a smaller
central value for (∆α)h with a reduced uncertainty. The
most stringent result of these theory oriented analyses is
[14]

(∆α)DH
h = 0.02770 ± 0.00016 (26)

that we will use in the sequel as reference value for this
kind of approach.

At the moment there is no definite argument for choos-
ing one or the other of the two approaches. The results
are absolutely compatible with each other. However, the
numerical difference between the central values and uncer-
tainties is such that it prevents an easy estimation of the
effect of choosing one value instead of the other. For these
reasons we decided to present our results for the values of
(∆α)h given by (∆α)EJ

h and (∆α)DH
h separately.

4.2 Top quark mass

The value of the top quark used in our analysis is the
combination of the experimental direct measurements re-
ported by CDF [15] and D0 [16]:

Mt = 174.2 ± 4.8 GeV. (27)

The Mt value obtained in the global fit of the EWWG
[5], that uses as experimental value input Mt = 173.8 ±
5.0 GeV, is actually a little bit smaller, i.e. Mt = 171.1 ±
4.9 GeV. The principal cause for this smaller value is con-
nected with the remnant of the famous Rb “anomaly”. In
our analysis we assume the validity of the SM and there-
fore we prefer to use the experimental result of (27).

4.3 QCD strong coupling constant

Among the various input quantities, the strong coupling
constant at the MZ scale is the least important. In fact,
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QCD effects appear in the theoretical calculations of s2
eff

and MW only at the two loop level. We use the world
average [17]

αs(MZ) = 0.119 ± 0.002. (28)

4.4 Effective mixing parameter sin2 θlept
eff

The effective Weinberg angle is the quantity that has the
greatest sensitivity to the Higgs particle. Therefore its pre-
cise value is very important in determining f(mH). There
is good overall agreement among all the measurements
although the two most precise ones, i.e. ALR from SLD
(s2

eff = 0.23109 ± 0.00029) and A0,b
FB from LEP (s2

eff =
0.23225 ± 0.00038), are still about two and a half stan-
dard deviations apart. However, the continual raising of
the SLD value during the recent years together with some
reduction of the A0,b

FB result has significantly improved the
agreement between the average LEP and SLD determina-
tions. In this situation we do not see any particular reason
either for excluding the SLD values or for attributing to it
a smaller weight [18]. Therefore we employ in our analysis
the combined LEP+SLD average [5]

sin2 θlept
eff = 0.23157 ± 0.00018. (29)

4.5 W boson mass

The present experimental information on MW comes from
the invariant mass of its decay products (LEP and Teva-
tron), from the threshold behavior of the production cross
section (LEP) and from the electroweak coupling constant
in neutrino scattering (NuTeV,CCFR). The first two mea-
surements can be considered as a kind of “direct” deter-
mination of the mass, in the sense that they are directly
sensitive to it and not to a combination of other parame-
ters of the SM. The combination of CDF [19], D0 [20] and
LEP values [5] (including also the old UA2 measurement
[21]), gives [5]

Mk
W = 80.39 ± 0.06 GeV. (30)

The result of the deep inelastic scattering experiments can
be reported using the quantity sin2 θw = 1 − M2

W /M2
Z . In

this case MW can be extracted in terms of the very precise
MZ value plus top quark and Higgs boson mass corrections
[22]:

Mdis
W

GeV
=

Mν
W

GeV
+ 0.073

(
M2

t − (175GeV)2

(100 GeV)2

)
−0.025 ln(MH/150 GeV), (31)

where Mν
W indicates the result at the reference values

(Mt = 175 GeV and MH = 150 GeV):

Mν
W = 80.25 ± 0.11 GeV.

In order to make use of all available information we pro-
ceed in the following way. We evaluate Aw

1 from Mk
W and

Table 1. MW determination

Xi E[Xi] σ(Xi) (∂MW /∂Xi) · σ(Xi)
(MeV)

(∆α)EJ
h (∆α)DH

h

(s2
eff)◦ 0.231525 0.000015 +1.7 +1.8

c1 (5.23 0.04)·10−4 +1.8 · 10−3 +0.11
c2 (9.860 0.003)·10−3 +4.7 · 10−4 −3.8 · 10−3

c3 (2.74 0.06) ·10−3 +6.1 · 10−2 +6.4 · 10−2

c4 (4.47 0.06) ·10−4 +5.6 · 10−3 +6.0 · 10−3

M◦
W /GeV 80.3813 0.0012 +1.2 +1.2

d1 0.0578 0.0004 −1.6 · 10−3 −0.09
d2 0.5177 0.0006 −8.6 · 10−4 +6.4 · 10−3

d3 0.540 0.003 −2.7 · 10−2 −2.7 · 10−2

d4 0.0850 0.0003 −2.5 · 10−3 −2.5 · 10−3

d5 0.00793 0.00012 −2.0 · 10−6 −6.5 · 10−3

(∆α)h 0.02804 0.00065 +13
(∆α)h 0.02770 0.00016 +3.7

Mt/GeV 174.2 4.8 +13 +12
αs(MZ) 0.119 0.002 −0.60 −0.55
s2
eff 0.23157 0.00018 −20 −21

MW /GeV 80.375 0.027 ←

MW /GeV 80.367 0.025 ←

Mdis
W separately using (2) (in the Mdis

W case the Higgs and
top dependence can be accounted for by redefining the
theoretical coefficients d1, d3, and M◦

W ). Once the com-
patibility of the two results has been established, we are al-
lowed to directly combine the MW values weighting them
with the inverse of the variance. We obtain

MW

GeV
= 80.36± 0.05+0.0023− 0.0057A1 +0.051A3 (32)

which is the value employed in the analysis. Again, the
Higgs and top dependence is taken into account by slightly
modifying the relevant coefficients in (2).

4.6 Theoretical coefficients

The various coefficients entering (1) and (2) are not known
exactly due to truncation of the perturbative series. This
uncertainty is usually estimated comparing the results of
different schemes of calculation that contain all the avail-
able theoretical information at a given order of accuracy.
Then the simplest procedure is to evaluate the best value
and standard deviation associated to the uncertainty of
each of the coefficients from the average and standard de-
viation of the values given in [4] (when all renormalization
schemes yield the same numerical results the standard de-
viation is that due to the rounding, i.e. the unit of the
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Table 2. Summary of indirect information. A1 ≡ ln(MH/100GeV), (∆α)h =
(∆α)EJ

h . See text for the meaning of “∗”

Xi E[Xi] σ(Xi) (∂A1/∂Xi) · σ(Xi)

“s2
eff” “MW ” Comb.

(s2
eff)◦ 0.231525 0.000015 −0.029 −0.024

c1 (5.23 0.04)·10−4 −3.1 · 10−5 −1.0 · 10−3

c2 (9.860 0.003)·10−3 −8.2 · 10−6 +1.3 · 10−5

c3 (2.74 0.06)·10−3 −1.0 · 10−3 −6.3 · 10−4

c4 (4.47 0.06)·10−4 −9.7 · 10−5 −8.2 · 10−5

M◦
W /GeV 80.3813 0.0012 +0.021 +4.0 · 10−3

d1 0.0578 0.0004 −2.0 · 10−3 +5.4 · 10−4

d2 0.5177 0.0006 −1.5 · 10−5 −2.6 · 10−5

d3 0.540 0.003 −4.8 · 10−4 −3.5 · 10−4

d4 0.0850 0.0003 −4.5 · 10−5 −8.9 · 10−6

d5 0.00793 0.00012 −1.7 · 10−4 +1.2 · 10−4

(∆α)h 0.02804 0.00065 −0.44 −0.21 −0.41
Mt/GeV 174.2 4.8 +0.29 +0.47 +0.33
αs(MZ) 0.119 0.002 −0.014 −0.026 −0.017
s2
eff 0.23157 0.00018 +0.34 +0.29

Mk
W /GeV 80.39 0.06 −0.82 −0.15

Mν
W /GeV 80.25 0.11 −0.45 −0.080

∗ ∗
As

1 0.00 → 0.63
Aw

1 +0.28 → 1.07

︸ ︷︷ ︸
ρ=+0.34

A1 0.05 → 0.61 ←
MH/TeV 0.13 0.08

(
M̂H = 0.07TeV, M50

H = 0.10TeV
)

least significant digit divided by
√

12). They are indicated
in Tables 1, 2 and 3 and considered independent in the
uncertainty propagation. Let us comment on the mean-
ing and the use of averages and standard deviations for
the coefficients. Taking as an example c1, we get (in units
10−4) E[c1] = 5.23 and σ(c1) = 0.04, obtained by the fol-
lowing numbers [4]: 5.23, 5.19 and 5.26. This does not im-
ply that one necessarily has to believe that 5.23 is really
more preferred than the others, as a Gaussian distribu-
tion centered in 5.23 with standard deviation 0.04 would
imply. One could imagine a uniform distribution ranging
between 5.16 and 5.30; or a triangular distribution cen-
tered in 5.23 and going to zero at 5.13 and 5.23; or any
other distribution having mean 5.23 and sigma 0.04. The
final result, relying on the central limit theorem, which,
for the relative sizes of the standard deviations of interests
ensures a fast convergence, will not depend on the shape
of the particular distribution (they could also be different
for different coefficients).

It should be noticed that the values presented in [4]
do not cover uncertainties associated with the QCD con-

tribution to electroweak corrections. The dominant part
of it is included in δQCD, the relevant correction in the
electroweak parameter ∆ρ. The uncertainty in δQCD will
make itself manifest in a correlated way in the various
theoretical coefficients.

To judge the effect of possible correlations in the val-
ues given in [4] we use the method outlined at the end of
Sect. 2. The more rigorous results derived with this proce-
dure are practically identical to those obtained using the
average values and standard deviations of each coefficient.
This is shown in Table 3 and 4 where the comparison of
the two methods is presented. In the combined final A1
result we report an additional digit to test the accuracy
due to rounding. Also the final shape of the p.d.f. of A1
obtainable from (9) is Gaussian with a good degree of
approximation, since it is the average of three Gaussians
(each of which is justified by the central limit theorem)
and the closeness of their centers is much smaller than
their widths. Given this situation, we present our result
as a function of average coefficients and of their standard
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Table 3. Like Table 2 but for (∆α)h = (∆α)DH
h

Xi E[Xi] σ(Xi) (∂A1/∂Xi) · σ(Xi)

“s2
eff” “MW ” Comb.

(s2
eff)◦ 0.231525 0.000015 −0.029 −0.026

c1 (5.23 0.04)·10−4 −1.8 · 10−3 −2.0 · 10−3

c2 (9.860 0.003)·10−3 +6.1 · 10−5 +5.7 · 10−5

c3 (2.74 0.06)·10−3 −1.0 · 10−3 −8.2 · 10−4

c4 (4.47 0.06)·10−4 −9.7 · 10−5 −8.9 · 10−5

M◦
W /GeV 80.3813 0.0012 +0.021 +1.9 · 10−3

d1 0.0578 0.0004 −2.7 · 10−3 +6.4 · 10−5

d2 0.5177 0.0006 +1.1 · 10−4 +9.0 · 10−6

d3 0.540 0.003 −4.7 · 10−4 −1.8 · 10−4

d4 0.0850 0.0003 −4.4 · 10−5 −4.2 · 10−6

d5 0.00793 0.00012 −3.1 · 10−4 +4.3 · 10−5

(∆α)h 0.02770 0.00016 −0.11 −0.051 −0.10
Mt/GeV 174.2 4.8 +0.29 +0.46 +0.30
αs(MZ) 0.119 0.002 −0.014 −0.025 −0.016
s2
eff 0.23157 0.00018 +0.34 +0.32

Mk
W /GeV 80.39 0.06 −0.79 −0.072

Mν
W /GeV 80.25 0.11 −0.43 −0.039

∗ ∗
As

1 0.23 → 0.46
Aw

1 0.39 → 1.02

︸ ︷︷ ︸
ρ=+0.29

A1 0.245 → 0.455 ←
MH/TeV 0.14 0.07

(
M̂H = 0.10TeV, M50

H = 0.13TeV
)

Table 4. Renormalization scheme dependence. The results shown here
should be compared with those of Table 3

Xi E(Xi) σ(Xi) (∂A1/∂Xi) · σ(Xi)

“MS” “OSI” “OSII”

(∆α)h 0.02770 0.00016 −0.10 −0.10 −0.10
Mt/GeV 174.2 4.8 +0.31 +0.31 +0.30
αs(MZ) 0.119 0.002 −0.016 −0.016 −0.015
s2
eff 0.23157 0.00018 +0.32 +0.32 +0.32

Mk
W /GeV 80.39 0.06 −0.072 −0.071 −0.070

Mν
W /GeV 80.25 0.11 −0.039 −0.039 −0.038

∗ ∗ ∗
A1|R1 (MS) 0.273 → 0.457
A1|R2 (OSI) 0.247 → 0.460
A1|R3 (OSII) 0.217 → 0.448

︸ ︷︷ ︸
σ2(A1)=(1/3)

∑
i σ2(A1|Ri)+σ2

E

A1 (average) 0.246 → 0.455
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deviations, because this method shows the sensitivity of
A1 to the various parameters in a clear way.

5 Results from the indirect determination

The determinations of MW are presented in Table 1. The
two values reported are obtained for (∆α)EJ

h (MW =
80.375 ± 0.027 GeV) and (∆α)DH

h (MW = 80.367 ± 0.025
GeV). The two results are consistent and both are well in
agreement with the experimental determinations given in
(30) and (31). The uncertainty on the indirect MW de-
termination is still a factor ≈ 2 better than the present
direct experimental result. The table also shows the con-
tribution to the total uncertainty of each input quantity,
with the sign of the derivative calculated in the reference
point. This information allows the result to be corrected
if any input quantity slightly changes in expected value
or standard deviation. Through the entries in Table 1 we
can estimate the shift in the predicted central value due
to unknown QCD effects in electroweak corrections. In-
deed a variation in δQCD introduces a shift on the calcu-
lated s2

eff and MW of δs2
eff ≈ −1 · 10−7δ(δQCD)M2

t and
δMW ≈ 2 · 10−5δ(δQCD)M2

t (GeV). For Mt = 175 GeV,
δ(δQCD) has been estimated ≈ 5.2 · 10−3 [23]. This in-
duces shifts in the values of s2

eff and MW that amount to
−1.8 · 10−5 and 3.1 MeV respectively. Using Table 1 one
finds an additional uncertainty in the predicted MW cen-
tral value, δMW ≈ 1 MeV.

The determination of MH from the effective mixing an-
gle and MW separately is presented in Table 2 ((∆α)h =
(∆α)EJ

h ) and Table 3 ((∆α)h = (∆α)DH
h ). All values are

given in TeV to reduce the number of digits to the signifi-
cant ones. The table also shows the combined determina-
tion. The values of As

1 and Aw
1 are in agreement within

the uncertainty. However, the MW determination is much
less precise and the effect of combining it with As

1 has al-
most a negligible impact on the determination of the Higgs
mass from s2

eff , also because of the correlation between
them. In case of a slight variation of the central values
of the input quantities the A1 result can be corrected us-
ing the information provided in the tables. However, the
same procedure cannot be applied in case of changes of
the standard deviations because A1 is obtained through a
combination where the inverse of the variances enters. For
the same reason input quantities with large uncertainty
are dumped in the combination and therefore they give
a small contribution to the total A1 uncertainty. In the
various tables, combination results are indicated by “∗”
below the relevant column.

Among the various observables whose theoretical pre-
diction depend upon MH , given the present values of the
A2–A4 quantities, s2

eff is by far the most effective in con-
straining MH . Any other, like e.g. MW or the leptonic
width, has a very modest weight in a combined analysis.
This fact justifies our choice of considering only one ob-
servable, MW , in addition to s2

eff . This situation will not
change in the near future. In fact, a W mass as effective in
the MH indirect determination as the present s2

eff requires
not only a very precise MW result (σ(MW ) ≤ 25 MeV) but

Fig. 3. Probability distribution function for the Higgs mass
from precision measurements. The solid line is obtained em-
ploying (∆α)h = 0.02804 ± 0.00065, the dashed one with
(∆α)h = 0.02770± 0.00016

also a reduction in the Mt uncertainty (σ(Mt) ≤ 2.5 GeV),
as already pointed out in [24].

Figure 3 presents the p.d.f. of MH obtained using only
the indirect information. The comparison of the two curves
shows that the use of a higher central value for (∆α)h

(i.e. (∆α)EJ
h ) tends to concentrate the probability more

towards smaller values of MH . This can be understood
from the negative derivative of MH with respect to (∆α)h,
shown in Tables 2 and 3. Indeed, in this case the median of
the distribution is M50

H = 0.10 TeV, while the analysis per-
formed employing (∆α)DH

h gives for the same quantity a
result ≈ 0.3 TeV higher, which is still less than half a stan-
dard deviation of the distribution. It is interesting to note
that although the A1 expected values and standard devi-
ations in Tables 2 and 3 are different, they actually give
a very close 95% probability upper limit, M95

H . Similarly,
while (∆α)DH

h has an uncertainty that is approximately 4
times smaller than (∆α)EJ

h , the standard deviations of the
two MH p.d.f.’s are very close too. Finally, we note that
a variation in δQCD of the order of magnitude discussed
above increases M95

H by ≈ 10 GeV.

6 Results including the direct search

An extensive program to look for evidence of a Higgs pro-
duction in the e+e− collision has been pursued at LEP
during the last decade. Presently results for Higgs searches
by all four LEP collaborations are available for center of
mass energies up to

√
s = 183 GeV [25–28]. The negative

outcome of these searches has been reported as a combined
89.8 GeV “95%C.L.” lower bound [29,30]. Unfortunately,
this result has no simple probabilistic interpretation re-
garding the Higgs mass [31]. The operational definition of
the limit is expressed in terms of a test-statistic, X, based
on the number of selected events and their distribution
in a variable that discriminates signal from background,
whose value measured in the data, Xobs, is compared to
that obtained on the basis of a large number of “simulated
gedanken experiments” [10], or

CLs(mH)=
CLs+b(mH)
CLb(mH)

=
P (Xs+b(mH) ≤ Xobs)
P (Xb(mH) ≤ Xobs)

. (33)
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The C.L. for the signal + background hypothesis, CLs+b,
is defined as the probability that the test-statistic is less
than or equal to Xobs, where the p.d.f. of Xs+b is obtained
by the Monte Carlo generation of experiments in which
a signal with mass mH is introduced in addition to the
background. The corresponding C.L. for the signal, CLs,
is then obtained by normalizing CLs+b to CLb, the C.L. for
the background only hypothesis, where the p.d.f. of Xb is
obtained similarly to that of Xs+b but generating experi-
ments with no signal. One may realize that the C.L. curves
do not correspond to the likelihood of the observed data as
a function of the Higgs mass (i.e. f(dir.|mH)). Therefore,
the published combined limit cannot be translated into a
number which could be used in an unambiguous way in
our analysis.

As outlined in Sect. 3.3, the information from the di-
rect search could easily be incorporated into the analysis if
we had the likelihood or, more simply, the R function. We
note here that the test-statistic Xobs of method A of [10]
actually corresponds to R. The publication of its value
as a function of mH would be sufficient for a complete
analysis to be performed. However, at the moment, this
information is not available.

Although we are not in a position to make a detailed
analysis, we can estimate the effect of the direct search re-
sults on the final p.d.f. of mH by employing the simplified
likelihood given in (22) and the public values of observed
number of events, expected backgrounds and efficiencies.
With respect to this a few remarks are in order: (i) in
the function R the important effect is always given by the
data at the last energy point available. In fact, because the
final likelihood of searches at different energies is given by
the product of the individual likelihoods at the various√

s, in the region of MH values close to MKeff of the high-
est energy point, the region which we are interested in,
only the corresponding R will be relevant because those
of lower energies are already saturated to 1. In our study
we thus only use data at

√
s = 183 GeV [25–28]. (ii) Differ-

ently from the other three experiments, L3 uses selection
criteria that depend on mH . Correspondingly the number
of selected events and backgrounds will be functions of
mH . This situation is not compatible with our simplified
likelihood. Therefore we do not consider the L3 data. (iii)
Equation (22) does not contain any information related
to the distribution of the signal and the backgrounds. At
the level at which we can perform our analysis using only
public results, shape effects cannot be taken into account.
However, the observed number of events in the various
channels reported by the three collaborations are always
either zero or a few units. Given this situation we expect
that it is the event counting which gives most of the con-
straint.

Figure 4 presents the R curves for the three experi-
ments, ALEPH (A), DELPHI (D) and OPAL (O). Each
curve is obtained by multiplying the R’s of the individ-
ual search channels of the experiment. The overall R for
the combination of three experiments is also shown la-
beled as LEP3. As said before, we cannot use the L3 data.
To try to take into account the L3 contribution we make

ℜ

Fig. 4. R vs. mH for the search at
√

s = 183GeV. The curves
A, D, O correspond to the single experiment. The LEP3 line
represents the combination of the three. The curve LEP4 is
obtained by raising the LEP3 one to the 4/3 power

the assumption that the L3 results are on average similar
to those of the other experiments. We then roughly esti-
mate the effect of L3, simply raising the combined R of
the other three experiments to the 4/3 power. The cor-
responding curve is presented in Fig. 4 marked LEP4. We
note that the OPAL R curve presents a bump which is
connected to a small excess of the observed number of
events with respect to the expected background in the qq̄H
channel. This bump is not particularly significant for two
reasons: (i) it is not very pronounced and therefore when
the OPAL R is combined with f(mH |ind.) the probability
in the corresponding Higgs mass region is not particularly
enhanced. (ii) Our analysis is based on the event counting
only and ignores the distribution of the signal and back-
ground. When the latter information is also taken into
account it is not unlikely that this bump disappears.

According to (20) the final p.d.f. is obtained by com-
bining the p.d.f. coming from precision measurements
(Fig. 3) with the likelihood derived from the LEP data
(Fig. 4), rescaled to the function R, or

f(mH |dir.&ind.) =
R(mH)f(mH |ind.)∫ ∞

0 R(mH)f(mH |ind.)dmH

. (34)

The result is shown in Fig. 5 where f(mH |dir.&ind.) is
compared to f(mH |ind.) for each assumption on (∆α)h.
To judge the sensitivity of f(mH |dir.&ind.) to the likeli-
hood we have actually evaluated (34) using two different
R’s (LEP3 and LEP4). The two resulting curves are in-
distinguishable as could be expected given that the two
R’s differ practically by a shift of ≈ 1/2 GeV. To envisage
a more different case, we compare the final distribution
presented in Fig. 5 with that we obtain in our simplified
analysis using only OPAL data. The difference in the ex-
pected value amounts to 4–5 GeV, depending on the value
of (∆α)h chosen, while the standard deviations are the
same. The “OPAL” M95

H is 3–6 GeV lower than the one
reported in Table 5 where our final results are presented.
The closeness of the various quantities shows that our re-
sults do not depend critically upon the details of the anal-
ysis.
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Table 5. Summary of the direct plus indirect information

(∆α)h = 0.02804(65) (∆α)h = 0.02770(16)

(ind.)


 ind.

+
dir.


 (ind.)


 ind.

+
dir.




E[MH]/TeV 0.13 0.17 0.14 0.16
σ(MH)/TeV 0.08 0.08 0.07 0.06
M̂H/TeV 0.07 0.10 0.10 0.10
M50

H /TeV 0.10 0.15 0.13 0.15

P (MH ≤ 95GeV) 44% 3.2% 26% 2.6%
P (MH ≤ 0.11TeV) 53% 19% 37% 17%
P (MH ≤ 0.13TeV) 64% 38% 52% 36%
P (MH ≤ 0.20TeV) 86% 75% 84% 79%

M95
H /TeV; P (MH ≤M95

H ) ≈ 0.95 0.28 0.33 0.27 0.29
M99

H /TeV; P (MH ≤M99
H ) ≈ 0.99 0.43 0.48 0.37 0.39

{
M1/TeV; P (MH < M1) ≈ 0.16
M2/TeV; P (MH > M2) ≈ 0.16

{
0.06
0.19

{
0.11
0.23

{
0.08
0.20

{
0.11
0.22

{
M3/TeV; P (MH < M3) ≈ 0.25
M4/TeV; P (MH > M4) ≈ 0.25

{
0.07
0.16

{
0.12
0.20

{
0.09
0.17

{
0.12
0.19

As expected, the inclusion of the direct search informa-
tion in the Higgs mass probability analysis drifts the p.d.f.
towards higher values of MH , changing its shape such that
the probability of MH values below 95 GeV drops to ≈ 3%.
Table 5 summarizes our analysis in terms of various conve-
nient parameters of the distribution. Expected value, stan-
dard deviation, mode and median are not very sensitive
to the values of the hadronic contribution to the vacuum
polarization. Also in both cases, 75% of the probability is
concentrated in the region MH < 0.20 TeV. Instead, the
choice of (∆α)h affects the tail of the distribution with
(∆α)EJ

h producing a longer one. Indeed while the use of
only indirect information gives very close values of M95

H ,
when the direct one is also included, the M95

H obtained
using (∆α)EJ

h is ∼ 0.4 TeV higher than the corresponding
number for (∆α)DH

h , and this effect is even more pro-
nounced for M99

H .

7 Conclusions

We have presented a method that allows the Higgs mass to
be constrained combining the indirect information coming
from precision measurements and accurate calculations,
with the results of the search experiments currently being
carried out at LEP. The method makes use of Bayes’ the-
orem which allows the p.d.f. obtained from precision mea-
surements to be augmented with the direct experimental
information through the likelihoods of the various search

channels. Such likelihoods should be provided by the ex-
periments, possibly in the form of the R function, that is
very convenient for comparing and combining the various
informations and also has an intuitive interpretation be-
cause of its limit to the step function of the ideal case.
Using the simplified form of (22) and the public results
concerning the observed number of events, backgrounds
and efficiencies of the ALEPH, DELPHI, OPAL exper-
iments for

√
s = 183 GeV, we have derived a p.d.f. for

the Higgs boson mass that includes the direct search con-
straint. Several parameters of the distribution have been
reported and we have verified that the main conclusions
do not depend to a great degree upon the detailed form
of the likelihood.

It should be clearly stated that our results are derived
under the assumption of the validity of the SM and using
as input quantities those described in Sect. 4. Our analy-
sis does not apply to different frameworks, like for exam-
ple the minimal supersymmetric standard model, except
the case when all SUSY particles are decoupled. Concern-
ing the input quantities, our results depend largely upon
the experimental value for s2

eff we have taken, see (29). It
seems to us reasonable to employ the combined LEP+SLD
value although, given the less than perfect agreement be-
tween the two most precise determinations, the suspicion
that some measurements are affected by not yet under-
stood systematic errors persists.

The last run of the LEP machine was performed at√
s = 189 GeV. Results on Higgs searches at this energy
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Fig. 5. Probability distribution functions using only indirect
information (solid line) and employing also the experimental
results from direct searches (dashed one)

are still preliminary and only DELPHI has presented a
somewhat detailed analysis of the searches in the H + Z◦
channel [32]. In the case of negative results by the other
collaborations similar to those reported by DELPHI, we
can make a rough estimation of the output of the search
at

√
s = 189 GeV by saying that the R will move 5–6 GeV

towards higher values of MH . The final f(mH |dir.&ind.)
will be correspondingly shifted in the same direction.
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